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The underlying concepts for calculating the power
of a statistical test elude most investigators. Under-
standing them helps to know how the various factors
contributing to statistical power factor into study de-
sign when calculating the required number of subjects
to enter into a study. Most journals and funding agen-
cies now require a justification for the number of sub-
jects enrolled into a study and investigators must
present the principals of powers calculations used to
justify these numbers. For these reasons, knowing
how statistical power is determined is essential for
researchers in the modern era. The number of subjects
required for study entry, depends on the following
four concepts: 1) The magnitude of the hypothesized
effect (i.e., how far apart the two sample means are
expected to differ by); 2) the underlying variability of
the outcomes measured (standard deviation); 3) the
level of significance desired (e.g., � � 0.05); 4) the
amount of power desired (typically 0.8). If the sample
standard deviations are small or the means are ex-
pected to be very different then smaller numbers of
subjects are required to ensure avoidance of type 1
and 2 errors. This review provides the derivation of
the sample size equation for continuous variables
when the statistical analysis will be the Student’s
t-test. We also provide graphical illustrations of how
and why these equations are derived. © 2005 Elsevier Inc. All

rights reserved.
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INTRODUCTION

Frequently asked these days is how many subjects
are really needed for a study [1]. Calculations for
answering this question are not intuitively obvious mak-
ing the determination of adequate sample size a myste-
rious process usually relegated to the local statistician.
Most computerized statistical packages include sample
size calculators allowing investigators to perform these
assessments on their own. Because computers will pro-
vide answers even if they are the wrong ones, it is
important for surgical investigators to understand the
basic tenets of sample size calculation so that they can
ensure that computerized algorithms are appropriately
used.

Previous statistical reviews published in the Journal
of Surgical Research summarized concepts necessary
for the understanding of sample size determination.
The basis for these calculations includes knowledge of
data classification, measures of central tendency, the
characterization of data sets [2], the fundamental con-
cepts of group comparisons and determination of sta-
tistically significant differences [3]. Statistics are all
about probabilities, using a sample to make inferences
about a population and minimizing the risk of making
erroneous conclusions regarding that population. As
such, there are several potential errors that must be
avoided that are summarized in Table 1.

Table 2 illustrates these relationships. Type 1 error
occurs when a screening test returns a negative result
when a patient has a disease. Type 2 error occurs when
a screening test returns a positive result when a pa-
tient does not have a disease. In designing experi-
ments, we attempt to minimize both types of errors but
minimization of type 1 error is most important. The

consequences of not establishing a diagnosis in a pa-
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tient with some disease are more significant than
falsely believing a person has a disease that, in reality,
they do not have.

Statistical writings are replete with double nega-
tives and confusing verbiage. Surgeons and other biol-
ogists may be intimidated by statistical language re-
sulting in a poor understanding of statistical concepts
and tests. Particularly striking is the basic tenet of
significance or hypothesis testing: The null hypothesis.
It is represented by HO and is defined as the assump-
tion that no statistically significant differences exist
between important properties describing groups being
compared. Alternatively, H1, the alternative hypothe-
sis represents the assumption that the measured enti-
ties characterizing the two groups are indeed different.

Confusion results from the application of double neg-
atives. We seek to prove that the null hypothesis, i.e.,
that no statistically significant differences exist, is
false. It is easier to state that we are seeking to find
differences between groups when they exist. That view
is more intuitively obvious and easier to reconcile.
However, it is important to recognize the null hypoth-
esis’s meaning given that it is ubiquitous in statistical
writings.

When statistically significant differences are calcu-
lated, an arbitrary � value is set. Statistical convention
sets this value at 0.05. In other words, there is a less
than 5% probability that observed differences between
groups occur because of chance alone rather than a
true difference between the groups. The � value estab-
lishes the risk of type 1 error, or the risk of falsely
concluding that differences between groups exist when
in fact none do.

Type 2, or � error, is the possibility of concluding
that no statistically significant difference exists when,
in fact, the groups being compared really are different.
The statistical power of a test is defined by 1�� or the
probability that when a test concludes that there is a
difference between the groups being compared that the
test result is correct. For example, if the � is 0.1 then
there is a 10% chance that two groups really were
different when a statistical test suggests that the mean
values for the properties describing the groups were

TAB

Types of Sta

Symbol Defintion

� Probability of rejecting H0

when it is true
Prob

fr
� Probability of accepting H0

when it is false
Prob

ex
1�� Probability of rejecting H0

when it is false
Prob

si

Note. Errors are the risk of falsely accepting or rejecting a null hy
not different. 1�� � 0.9 such that the tests power is
0.9. This means that the statistical test has a 90%
probability of being correct if it concludes that there is
a difference between groups when a difference really
exists. Implicit in this is that if the test finds no differ-
ence between the mean values describing the groups
properties, there is a 90% chance that there really is no
statistically significant difference between the groups.

THE LONG FORGOTTEN EPIC BATTLE BETWEEN
STATISTICAL GIANTS

A bitter, ferocious argument smoldered over the
course of decades early in the last century between
those responsible for developing the concepts of statis-
tical significance testing and hypothesis evaluation [4].
The story starts with Karl Pearson (1857–1936) con-
sidered being one of the founders of statistics. He was
responsible for the Pearson correlation coefficient, the
�2 test, linear regression and other fundamental con-
cepts of statistics. He founded and headed the Depart-
ment of Statistics at University College in London.
That department was split into two to accommodate
two other giants in statistics, Egon Pearson (1895–
1980), Karl’s son and Ron Fisher (1890–1962). Fisher
was most prolific, publishing on average one paper

TABLE 2

Further Examples of Error Types as they Pertain to
Diagnostic Tests

Actual situation (disease)

Positive Negative

Screening test
Positive Correct Type 2 error
Negative Type 1 error Correct

Note. Type 1 errors occur when a diagnostic test is negative but a
patient actually has a disease. This is considered to be more serious
than type 2 errors being that establishing the diagnosis of a medical
problem may be missed. Type 2 error occur when a test is falsely
positive, i.e., that a test is positive when the patient does not have a
disease. Under these circumstances, the positive test will result in
further evaluation that will, hopefully, reveal that the disease was

1

tical Error

Alternate definition Implication

ility of an observed difference resulting
chance alone

Type 1 error

ility of concluding that no difference
s when one is present

Type 2 error

ility of detecting a statistically
ficant difference if one exists

Power

thesis when it is true or false. H0-the null hypothesis.
LE

tis

ab
om
ab
ist
ab

gni
not actually present.
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every 2 months and was responsible for many concepts
guiding research today. Most importantly, he devel-
oped the idea of significance testing and P values.
Fisher’s analytic approach was inductive being that he
believed that experimental observations were repre-
sentative samples of a larger universe or population of
observations for features that characterize groups be-
ing compared experimentally. Experimental data were
considered as a sample from a larger population with
various assumptions being made regarding how repre-
sentative the sample was of the overall population.
Fisher’s concept was that when groups were compared
the probability (P) that there was no statistically sig-
nificant difference between them, i.e., the null hypoth-
esis was true, could be estimated. The smaller the P,
the more likely that the groups were different. Impor-
tantly, Fisher did not advocate a threshold P value for
decision-making regarding a yes or no decision for sta-
tistical significance. Fisher believed that the strength
of evidence for group difference rested with the P value
and the investigator had to decide if the differences
were important or not. Legend has it that the origin of
the famed P � 0.05 threshold emanated from Karl
Pearson’s refusal to publish (as editor of Biometrika)
Ron Fisher’s table of statistical probabilities in their
full form [5]. Fisher was forced to truncate the tables
into categories of P � 0.05 and 0.01. Given the avail-
ability of these values in the published tables, these
probability levels became the standard thresholds for
statistical analysis.

Fisher was completely opposed to the concept of a yes
or no decision regarding significance testing. He be-
lieved that the P values should be assessed in the
contect of the data as a continuous variable. The
smaller the P value, the greater likelihood that groups
were truly difference [6]. A major weakness of Fishers
approach was that when groups do not differ, i.e., the
null hypothesis is proven correct, definite conclusions
regarding the groups could not be made. Fisher pas-
sionately believed that conclusions were valid only
when they proved differences between groups. When
not different further experimentation was necessary.
With this philosophy data are viewed as representative
of some larger universe of findings and that there is no
prior knowledge of regarding the system under study.

Fisher’s colleague at the University of London, Egon
Pearson developed a completely different view of data
analysis. Together with Jerzy Neyman (1894–1981),
Pearson developed the concept of hypothesis, rather
than significance testing [7]. The intent was to estab-
lish a mechanism for making decisions about groups
being compared and quantitating the costs incurred for
making these decisions. This had great practical impor-
tance for industry being that when using statistics to
analyze business systems, experiments were designed

that was costly to perform and had to result in useful
decisions regarding industrial processes. Fisher’s signif-
icance testing was more theoretical and less practical
and ignored the cost of performing an analysis. In this
regard Fisher’s system was considered more applicable
to scientific research than to industrial applications.
Neyman and Pearson’s system was deductive, in con-
trast to Fisher’s inductive analysis, in the sense that
data were produced under predefined circumstances
with predetermined constraints for analyzing them.
They introduced the concept of �, the level of signifi-
cance associated with type 1 error. They also intro-
duced �, the counterpart for type 2 error. From this
1�� or the experiments power could be determined.
Now the cost of an experiment in terms of trading off
type 1 and 2 errors could be established when design-
ing an experiment. Additionally, their system was a
decision-making scheme for accepting or rejecting hy-
pothesis. An important difference between this and
Fisher’s significance testing was that Fisher did not
provide for making decisions regarding groups, only for
assessing the relative strength to accepting or rejecting
null hypotheses. Neyman and Pearson provide yes or
no decisions regarding hypotheses but not any assess-
ment of the strength of the differences between groups.
In this regard, P values and � levels are not the same
and should not be confused. At the heart of the
Neyman-Pearson approach is the simultaneous consid-
eration of the null and an alternative hypothesis
whereas Fisher believed that alternative hypotheses
had no validity.

Table 3 summarizes the differences between Fisher
significance analysis and Neyman-Pearson hypothesis
testing. Modern statistics has adopted the latter ap-
proach but, commonly, significance testing remains
pervasive and often blended into discussions of hypoth-
esis testing. Some of the most rancorous discussions
and life-long disputes between Fisher and the others
resulted from these differences in opinion regarding
the appropriate form of data analysis. Fisher com-
plained that Karl Pearson restrained his ability to
publish his ideas. Fisher and Neyman-Pearson had
public battles waged in open discussions and the pub-
lished literature. These battle were waged over the
course of four decades with neither side fully acknowl-
edging the others validity. Only Student, i.e., William
Sealy Gosset, was able to mediate between parties.
Although intensely loyal to Fisher for legitimizing his
concepts of small-sample effects resulting in the devel-
opment of the Student’s t-test, even Student noted that
the Neyman-Pearson approach to hypothesis testing
was more effective that Fisher’s significance tests.

STATISTICAL POWER

Power is a measure of a statistical tests ability to
detect differences. The importance of this is that when

no statistically significant differences are found be-
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tween groups, i.e., the null hypothesis cannot be re-
jected, there is a quantifiable degree of assurance that
the groups are indeed not different. For hypothesis
testing, an � level is fixed, establishing a threshold for
rejecting the null hypothesis. This process defines what
the allowable type 1 error will be and is typically set at
0.05. Next the � level is established, fixing the allow-
able type 2 error rate will be. Recall that �, or type 2
error, represents the likelihood of accepting the null
hypothesis when it is in fact false. Under these circum-
stances the groups are believed to be the same when in
fact they are different. Being less critical than type 1
error, allowable type 2 error rates are usually fixed at
0.2. Power is 1��, usually 0.8, and represents the
likelihood of rejecting the null hypothesis when it is
false. This represents the probability of the testing
procedure correctly concluding that the groups are dif-
ferent when they are indeed different.

For continuous, normally distributed data, the test
most commonly used to determine the statistical sig-
nificance between observed differences between groups
is the Student’s t-test [3]. The basic equation for this
test is:

t �
�1 � �2

�� 1

n1

�
1

n2

t is the t-statistic whose numerical value is a measure
of how different group means are. The t-statistic pro-
vides a measure of how extreme a statistical estimate
is. The larger the t-value, the greater the strength of
evidence is that two group means are different. �1 and
�2 represent the mean values from the sample being
studied.1 Obviously, the larger the difference between
means the larger the t-value and, therefore, the greater

TAB

Difference between Signific

Fisher significance test

Inductive: From specific to general
Inductive Inference: Interpretation of the strength of

evidence in data
P-value: Data-based random variable
Property of data
Short-run: Applies to any single experiment or study

Hypothetical infinite population

Note. Significance testing only enables the investigator to charact
hypothesis cannot be rejected, i.e., no statistically significant differe
be drawn. Thus, one can never definitively conclude that the groups
a null and alternaive hypothesis, hypothesis testing allows for conclu
is rejected providing some degree of assurance that the groups bein
the probability that the groups differ. � is the standard
deviation for the two groups. The Student’s t-test is
predicated on both groups having equal variance, i.e.,
the same standard deviation. The number of data
points in each group is represented by n. This term
accounts for the uncertainty in determining the true
mean from small samples. Smaller group sizes will
result in lower t-values and, therefore, less likelihood
that statistically significant differences exist.

Rearranging the equation yields the following pro-
portionality:

n 	 � t�


�
� 2

which means that to avoid type 2 error, the number of
subjects required for a study will be dependent on the
t-value for that study, which in turn, is dependent on
the �-level that has been established. The required
number will also be proportional to the study popula-
tions’ standard deviation and inversely proportional to
the difference in mean values for the two groups. Thus,
one of the parameters most computer programs require
for calculating statistical significance is the �-level
that has been established for the study. In most cases
this is 0.05. The number of subjects will be proportional
to the standard deviation, �. When the standard devi-
ation is larger, there will be a need for larger study
groups. Similarly, if the means between groups are
relatively close to one another then the study groups
will also need to be larger to ensure that the study has
sufficient power to ensure that if no statistically signif-
icant differences between groups are found then there
is little likelihood that a difference truly exists. Sample
size is a balancing act and in general, the more
variability in the data (�.), the larger the sample
size, the smaller the difference being detected (��),
the larger the sample size and/or the smaller the

3

ce and Hypothesis Testing

Neyman-Pearson hypothesis test

eductive: From general to specific
ductive behavior: Make decisions based on data

Pre-assigned fixed value
operty of test
ng-run: Applies only to ongoing identical repetitions of original
experiment or study, not to any given study
learly defined population

ze the strength of the rejection of a null hypothesis. When the null
s are found between the groups being compared, no conclusions can
ng compared are, in fact, the same. By simultaneous assessment of
s that the null hypothesis is accepted when the alternate hypothesis
mpared are statistically the same. Adapted from [5].
LE

an

D
In

�:
Pr
Lo

C

eri
nce
bei

sion
probability of an observed difference resulting from
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chance alone (�-level), the larger the sample size.
From this relationship, one can see that establishing
the �-level and having some idea of the population’s
standard deviation and the size of the difference
between means of the groups is needed for calculat-
ing the number of subjects required for a study.

SIZE EFFECTS OF THE SAMPLE, VARIANCE, AND
MEAN DIFFERENCE

To illustrate power calculations consider the follow-
ing example: We desire to know if men are, on average,
heavier than women in the U.S. population. To deter-
mine this we obtained body weight measurements from
31,132 individuals that underwent physical examina-
tions as part of the Third National Health and Nutrition
Examination Survey (NHANES III) [8]. We avoided the
confounding effects of children and patients with dis-
ease by excluding those with weight less than 40 kg.
When this was done the mean � SD weight for 11,035
women was 68.5 � 17.8 kg and for 9,709 men was 76.9
� 18.1 kg. A t-test revealed that men’s weight is sta-
tistically significantly different than women, with a P
value of �0.0001. Using a two-tailed test, we can only
make the inference that the means are different, how-
ever, based on the values of the means we can state
that men average weight is significantly greater than
woman’s. The assumption that the standard deviations
for men and women are approximately equal was evi-
dent, ensuring the t-test was a valid method. Using the
SAS statistical package (Fig. 1), a power analysis was
performed yielding the output displayed in Fig. 2.

Given the body weights we assessed, one would need
98 patients per group to ensure a 90% probability that
statistical testing will reveal that weights were differ-
ent if indeed they really are. Similarly, if the two
populations whose weights are being compared are
really not different, there is a 90% chance that the

FIG. 1. SAS input for power analysis. This form typifies that
found in most statistical packages calling for entry of the means and
standard deviations to be assessed. The SAS package can provide the
statistical power or the number needed per group in a study to

achieve the desired type 1 and 2 error rates.
testing procedure will result in a conclusion that they
are not different, i.e., the null hypothesis is not re-
jected. If there were 37 patients per group, then there
would only be a 50% probability that the statistical
testing procedure would result in rejecting the null
hypothesis, i.e., concluding that there was a statisti-
cally significant difference between the groups.

For the entire population of body weights the distri-
bution is displayed in Fig. 3. The y-axis represents the
frequency with which any individual weight occurs in
the population. The x-axis displays the weights.
Women are represented in by the black-colored curve
and men by the one that is gray. The curves are rea-
sonably broad that pictorially demonstrates the some-
what large standard deviations. However, the peaks
are far apart from one another. Thus, there is little
doubt that men are significantly heavier than women.

What do the curves look like when there is less
power? As seen in Fig. 4, a random selection of 90
patients were selected from the overall population. As
can been seen, the smaller sample size results in a
frequency distribution that is much less bell-shaped
(Gaussian in statistical terms) than the curves ob-
tained from the overall population. There is much more
variation in men’s weight manifested by the wider
frequency distribution. Statistically, this is manifested
by a larger standard deviation. Despite the large vari-
ation in the body weights, the mean values between
men and women remain very different. This illustrates
that even when sample size’s become small, if the
means are very different, there is a high likelihood that
significant differences will be found.

What is the effect of group size when the means are
relatively close together? Using the same population
we asked the question if the high-density lipoprotein

FIG. 2. SAS output for power analysis. Achieving greater power
is dependent on the sample size with increasingly large samples
resulting in greater statistical power. When designing experiments
the desired power is established ahead of time and represents a
compromise between assurance that the resulting statistical analy-
sis accurately represents the groups characteristics behaviors
against the cost of performing the study attributable to the number
of required subjects. For most instances, selection of 80% power
results in an adequate compromise.
(HDL) levels were different between women and men.
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Selecting 30 patients in each group yielded the proba-
bility distribution shown in Fig. 5. For this sample the
mean � SD for women was 53.4 � 12.9 and for men it
was 47.4 � 11.9. The t-test for significant differences
between these two groups was 0.09, i.e., they were not
significantly different at the � � 0.05 level. However,
the statistical power was only 0.40 suggesting that
given the wide scatter in the data and the relatively
close values for the group’s means, this sample could
not reliably exclude that the groups were not different.
In other words, based on this sample, there is not enough
power to detect a statistically significant difference and
one cannot definitively say that the groups were not
statistically different based on the t-test. What happens
when we examine the entire population of 2,700 patients

FIG. 4. Body weights for a sample of the NHANESIII population.

FIG. 3. Body weights for the entire NHANESIII population.
Assuming that this dataset represents the entire universe of body
weights, the groups are different because their mean values are
different.
With smaller sample sizes the peaks are less distinct.
that had lipids drawn in NHANESIII? Figure 6 shows
the frequency distribution for the entire population. It
is evident that the two groups do differ with women
having higher HDLs than men. The mean � SD HDL
for women was 54.2 � 15.2 and for men it was 47.4 �
14.1.

These figures and statistics demonstrate the im-
portance of having sufficient numbers of subjects in a
study before concluding that no statistically signifi-
cant differences exist. Thus, when designing studies
it is crucially important to account for the antici-
pated mean differences and standard deviations of
the measured samples to perform a power calcula-
tion. Unless adequate numbers of individuals are

FIG. 6. HDL for the entire NHANESIII population. Assuming
that these curves represent the entire universe of High Density
Lipoprotein (HDL) measurements, it is evident that females have
higher HDL levels than males being that the mean values for the two

FIG. 5. HDL for a sample of the NHANESIII population.
genders are clearly different.
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included, apparent lack of significant differences be-
tween groups may be unreliable. One cannot con-
clude that differences do not exist unless the study
has sufficient statistical power to detect clinically
significant differences.

DERIVING THE EQUATION FOR
POWER CALCULATION

Although statistical nomenclature is confusing, it
does serve a purpose. We have noted that use of
double negatives, such as failing to reject the null
hypothesis, is conceptually difficult for the non-
statistician. Confusion results from verbiage such as
“failing to reject the null hypothesis” rather than
simply stating we accept the null hypothesis. How-
ever, statistics is used to produce estimates and
make inferences about populations using smaller
samples and thus must always consider events that
happen because of chance. Graphical presentation of
these notions clarifies why statisticians view the
world in terms of null hypotheses and will show how
power equations are derived.

When comparing the means of two groups we rely
on statistical tests to determine if the groups are
different or not. We start with the null hypothesis
and assume that the groups are not different. We
need to develop a mathematical equation to repre-
sent this concept. This is done by subtracting the two
sample means, which should equate to zero if the
means are the same. From a statistical perspective,
one must account for the fact that we may not know
what the mean value is exactly because of sampling
issues. As was pointed out earlier in this series, the
central limit theorem demonstrates that the smaller
a sample size is, the less likely one is to know exactly
what the overall population means is. The genius of
Student, i.e., William Sealy Gossett of the Guinness
brewery, was to characterize the uncertainty of
knowing the true population mean value from a sam-
ple and develop a statistical test that incorporated
all these concepts [3]. Thus, when we hypothesize
that the means from two samples are the same, we
must account for the uncertainty in not knowing the
true population means. When we subtract the two,
there will not be a discrete number but, rather a distri-
bution of values reflective of the uncertainty of the true
mean values. In the figures below, we present the null
hypothesis as a Gaussian distribution (bell shaped, nor-
mal distribution) centered around zero. We assume that
the subtracted mean values are zero but the size and
shape of the bell shaped null hypothesis distribution is
determined by the population variance and the uncer-
tainty in knowing values of true population means
actually based on the sampling distribution. Both of
these are mathematically represented by the standard

error of the mean (SEM). Recall that the SEM is the
standard deviation divided by the square root of the
sample size n. As sample sizes decrease, there is
greater uncertainty in knowing exactly what the pop-
ulation mean is from the sample reflected in larger
SEM values.

Evaluation of the null hypothesis is used to deter-
mine if groups are really different. The alternative
hypothesis, HA, states that the groups differ by some
value. Just as the null hypothesis is used to deter-
mine if the groups are different, the same backward
thinking applies to the alternative hypothesis: We
ask if the groups differ by some amount to statisti-
cally assure ourselves that they may be the same.
Assessment of HA provides with a statistical analy-
ses probability of type 2 error and its power. These
concepts are illustrated in Fig. 7. It is apparent from
the above figures that when evaluating all 20,000
body weight measurements, there is a narrow distri-
bution of error when estimating the difference be-
tween mean values. If we ask the question if men
weigh at least �2 kg then women, the answer is an

FIG. 7. Distribution of the null and alternate hypothesis for the
patient weight data presented above. The alternate hypothesis was
defined as observing a difference between the groups of larger than
2 kg. For the entire sample of measured body weights, the observed
SEM was approximately 0.17. The equation for these plots is Z �
(x��)/SEM where Z represents the area under the curve and corre-
sponds to the probability of �, x is the value represented along the
x-axis, �, the mean value, and SEM. The plots represent the stan-
dard normal distribution such that 95% of the area under the curve

occurs at 1.65 � SEM.
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unequivocal yes. There is no overlap between the
distribution of possible mean values at x � 2 with no
overlap at x � 0. What happens when the sample size
is smaller? In the example we used above, a sample
of 45 individuals from each group was obtained. This
resulted in a SEM of 2.5. This is demonstrated in Fig.
8.

The curves in Fig. 8 represent the null and alternate
hypothesis for a sample of 45 males and 45 females
taken from the NHANESIII population comparing
male and female body weights. Note that with the
small sample (n � 45) of the large (approximately
10,000) population, the uncertainty of knowing exactly
where the mean is located is manifested by a much
wider curve than that shown in Fig. 7. Consequently,
there is much greater overlap between the null and
alternate hypothesis curves for this smaller sample.
The upper curve represents the null hypothesis, i.e.,
that there are no statistically significant differences
between the samples and, when subtracted, the result

FIG. 8. Null and alternate hypothesis plots. Red shading repre-
sents the � region of the null hypothesis curve. The yellow, the � region
of the alternative hypothesis. The blue portion of the alternative hy-
pothesis defines 1�� or the power region. The vertical line is defined as
the critical value. The critical value defines the accept/reject region, By
convention it is usually established at the � � 0.05 region, i.e., where
the area under the probability curve is 0.05 (0.025 for two-tailed tests).
To the right of the critical value we reject the null hypothesis and to the
left we accept it. As described in the legend for Fig. 7, the 95%/5% region
is at 1.65 � SEM. In this figure that corresponds to 4.1. Thus, the

critical value for this example is 4.1.
is zero. The vertical line represents the critical value,
which is 1.65 � the SEM, or 4.2 for this example. To the
right of the critical value the area under the curve � 0.05,
is the � region and is delineated in red. Thus, if the
difference between the group means exceeds 4.1 there
is a greater than 95% probability that the observed
difference is real and not because of chance alone.

The lower figure represents the alternate hypothesis
that the means are at least 2 kg greater than one
another. The yellow region to the left of the critical
value is the � region and for this case is 88% of the area
under the curve. The blue region to the right of the
critical value on the alternate hypothesis represents
the statistical power and in this case is 12%. Thus, for
this example there is a 12% likelihood that statistical
testing will result in rejection of the null hypothesis. In
other words, there is a 12% chance that a statistical
test will find that the two groups being compared will
be different. From a practical perspective, this also
means that if no statistically significant differences are
found between the groups, the investigator cannot re-
liably conclude that no statistically significant differ-
ences exist between the groups. For a larger difference
in the alternative hypothesis, the curve shifts to the
right as is demonstrated in Fig. 9.

From these curves one can see how statistical power
may be increased. If the means are very different the
alternate hypothesis moves to the right increasing the
area under the power region. Greater sample sizes
narrows the shape of these curves such that there will
be less overlap between the curves as was observed in
Fig. 7. From these illustrations one can also derive
equations for calculating sample sizes. First, some sim-
plification: We assume that these curves are normally
distributed. An equation describing them is:

Z �
x � �

�� 1

n1

�
1

n2

Where Z is a number characteristic for normal curves
and can be obtained from standard tables. � represents
the standard deviation, which we assume to be equal
for the two groups being compared and n is the sample
size. x is a point along the x-axis and � is the sample
mean.

We use the null hypothesis to test whether or not two
sample means are different or not. We assume that
they are the same and if they turn out to be different
we reject the null hypothesis if the means differ by a
value exceeding that associated with the 5% probabil-
ity region on the upper curve in Fig. 9. This is repre-
sented by the red region on the rightward tail of the
probability curve. The line passing through the x-axis
at this location is called the critical value. Any value of

z greater than xc will be associated with groups that
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have a greater than 95% chance of being truly differ-
ent. For the null hypothesis, �� � 0 thus:

Z� �
xc

�� 1

n1

�
1

n2

meaning that the z value for the null hypothesis relat-
ing to the probability of avoiding � error is equal to the
critical x value divided by the SEM.

The alternate hypothesis is stated to assure our-
selves that we do not falsely conclude that no statisti-
cally significant differences exist when in fact they do.
We assumed that no differences existed in stating the
null hypothesis to prove that groups are really differ-
ent. We do the opposite to assure ourselves that we do
not falsely assume that there are not differences by
assuming they are there. We start by making some
arbitrary guess at how far apart the differences should
be such that they are important.

For Fig. 9, we assumed that the means of two groups
being compared must differ by more than 10. We know
what xc should be from the null hypothesis. A line is

FIG. 9. An alternate hypothesis of 10 shifts the curves to the
right. The yellow region, i.e., the � region, is much smaller meaning
that there is a much lower probability of concluding that no differ-
ence exists when in fact it does. The blue region, which represents
statistical power, is much larger.
drawn through xc on the alternate hypothesis curve
dividing it into two regions. To the left of the line is the
� region and is depicted in yellow. To the right is 1��,
or the power region and is colored blue. For the alter-
nate hypothesis:

Z� �
� � xc

�� 1

n1

�
1

n2

As demonstrated in Fig. 9, the critical region is to the
left of the mean and, therefore subtracted from it.
Making some substitutions and rearrangements:

�Z� X �� 1

n1

�
1

n2
�� � � �Z� X �� 1

n1

�
1

n2
�

Rearranging again:

�Z� � Z�� �
�

�� 1

n1

�
1

n2

and assuming that the groups being compared are the
same size, i.e., n1 � n2:

�Z� � Z�� �
�

��2

n

or:

�Z� � Z�� �
��n

�2�

Squaring both sides and rearranging yields the equa-
tion used to calculate sample size for each group:

n � 2�Z� � Z�� 2��

�
� 2

(Eq.1)

Z� is selected such that the critical region lies to the left
of that portion of the tail corresponding to the proba-
bility that we avoid � error. Typically this is selected as
80 or 90%. Given our definitions, � represents the
expected difference between the means for the two
groups being compared. n refers to the number of sub-
jects in each group such that the total number of re-
quired observations will be 2n when there is two
groups.
From these graphs and Eq. 1 it is evident that the
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number of subjects required for a study varies pro-
portionately to the � and � levels selected. Larger
standard deviations of the samples will increase the
needed number by the square of � such that small
increases in the data’s scatter require great in-
creases in the sample size to avoid type 2 error.
Conversely, if the two sample means are very far
apart, the number of subjects required is much
smaller. Although this equation is used to determine
sample sizes for two groups of continuous data, sim-
ilar equations have been derived for all statistical
tests based on the assumptions regarding the distri-
butions of those tests.

Often times, statistical texts refer to the effect size.
This is �/� or what fraction of the standard deviation
the difference between the expected mean values will
be. From Eq. 1, we can see that the number of subjects
required for a study is proportional to the squared
inverse of the effect size.

Figure 10 demonstrates the impact effect size has on
the required number of subjects for a study. The red
line represents this effect when � is 0.05 and � is 0.8,
the most common set of parameters used for these
calculations. When more statistical power is desired,
i.e., � is increased to 0.9, more subjects are required for
the same effect sizes. The figure demonstrates the in-
verse square relationship between the required sample
size and effect size. When the difference between
means is one-half a standard deviation, one needs 32
subjects per group for � � 0.05 and � � 0.2. For this
same set of � and �, one requires 16 subjects per group
if the mean difference is one standard deviation or 252
per group if the mean difference is one-fourth of the
standard deviation. This figure illustrates the powerful
effect on power and sample size the mean difference
and standard deviation have. When designing experi-
ments, the goal is to obtain the largest possible effect
size with the smallest investment in the number of
subjects studied. Studies can be optimized by looking
for endpoints that have the largest possible difference
between groups or by selecting groups that are homog-
enous as possible resulting in the smallest possible
standard deviation.

SUMMARY

The calculation of sample size depends primarily on
four factors:

1. Magnitude of the hypothesized effect
2. Underlying variability of the outcome measure-

ments of interest
3. Power
4. Pre-determined level of significance.

If a target level of power is chosen (e.g., 80%), and

assumptions can be made regarding the size of the true
effect and the underlying variability, then one can com-
pute the required sample size.

The magnitude of the hypothesized effect or the
“minimal clinical significant difference” can be based
on pilot studies, previously published literature, or
even a researchers clinical experience. The underly-
ing variability may be more difficult to determine,
however, reasonable estimates may be obtainable.
Ultimately, we must also consider whether the sam-
ple size estimate is feasible. There may be monetary
or time constraints. Often a range of sample sizes
based on different power levels and error bounds can
be useful.

In conclusion, statistical power and sample size de-
pend on the degree of assurance one selects for avoid-
ing type 1 error (� level) and type 2 error (� level). The
number required increases proportionately to the
square of the standard deviation and inversely to the
square of the expected difference between the means of
the two groups being compared.

NOTES

1. Statistical writings always use x(bar) to denote sample means
and � to denote population means. Similarly, the population
standard deviation is denoted as � and as s when the standard
deviation is derived from a sample of the population.

2. The following Web-based resources were used: URLs to sample
size references (http://www.graphpad.com/index.cfm?
cmd�library.page&pageID�19&categoryID�4); Tutorial re-
garding sample size determination for various types of data and
experimental designs (http://obssr.od.nih.gov/Conf_Wkshp/
RCT03/Lectures/Catellier_Sample_Size.pdf); Listing of web-
based statistical resources (http://members.aol.com/johnp71/

FIG. 10. Impact of effect size on the number of subjects re-
quired for each group. Effect size is defined as the difference
between group means divided by the standard deviation. Given
that effect size is given in terms of a fraction of the standard
deviation it can provide a general classification for observed dif-
ferences as a function of the data’s dispersion. By convention,
small effects are defined as approximately 20% of the standard
deviation, medium 50% and large 80%.
javastat.html#Power).

http://www.graphpad.com/index.cfm?cmd=library.page&pageID=19&categoryID=4
http://www.graphpad.com/index.cfm?cmd=library.page&pageID=19&categoryID=4
http://obssr.od.nih.gov/Conf_Wkshp/RCT03/Lectures/Catellier_Sample_Size.pdf
http://obssr.od.nih.gov/Conf_Wkshp/RCT03/Lectures/Catellier_Sample_Size.pdf
http://members.aol.com/johnp71/javastat.html%35Power
http://members.aol.com/johnp71/javastat.html%35Power
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